Improving locality of an object store in a Fog
Computing environment

Bastien CONFAIS, Benoit PARREIN, Adrien LEBRE
LS2N, Nantes, France

Grid'5000-FIT school

4th April 2018

@ @ Dwwe oo

1/29

2/29

Outline

@ Fog computing architecture

Improving locality when accessing an object stored locally
P g y g J

© Improving locality when accessing an object stored on a remote site

@ A more realistic experiment using FIT and G5K platforms

@ Conclusion

3/29

Extreme Edge
Frontier

3 A

Fog Computing architecture

Cloud Computing

Leth]

Fogsite Inter Micro DCs latency
LCore [50ms-100ms]

7N

‘Mobile Fog latency
LCore=200ms

og site

' Fog Computing *Micro/Nano DG

Edge
Frontier

\.Fogsite .

Cloud Latency .
LCloud =200ms S -

Fog site ‘"\ N
Edge to Fog latency
LFog [10-100ms]

Edge
Frontier

Wired link

Wireless link -----------

Figure 1: Overview of a Cloud, Fog and Edge infrastructure.

Properties for a Fog Storage system

We established a list of properties a distributed storage system should have:

Data locality;

Network containment;
® Mobility support;

® Disconnected mode;

Scalability.

4/29

Assumptions

Clients use the closest Fog site;

® Lrog (x10ms) < Liore (= 100ms) < Ljoud (= 200ms); enlever
® Objects are immutable;

® \We want to access the closest object replica;

® We particularly focus on location management.

5/29

IPFS in a nutshell

Among three existing object stores, InterPlanetary File System (IPFS)?
filled most of the properties (Rados and Cassandra were also studied)?.

IPFS is an object store that uses:

® 3 Kademlia Distributed Hash Table (DHT) spread among all the
nodes to locate the objects;

® a BitTorrent like protocol to exchange the objects.

I DBLP:journals/corr/Benet14
6/20 2 confais:hal-01397686

Improving locality when accessing an object stored
locally

Reading an object stored locally

Limitation When the requested node does not store the object, Inter-sites network
traffic is generated by accessing the DHT to locate it (in red).

Site 1 Site 2
[Client] [IPFS Nodel| [IPFS Node2| || [IPFS Node3]

get object

read object

fimd
locationg|in DHJD

send object

= get object

v

et/read objec

send object
koo o oo oo o= _3ehd opject

)

ore object

pht
ocation|in DHT;

Figure 2: Network exchanges when a client reads an object stored locally, on IPFS Nodel.

8/29

Our solution: coupling IPFS and a Scale-Out NAS?3

IPFS global DHT

Figure 3: Topology used to deploy an object store on top of a Scale-Out NAS local to each site.

0/20 3ICFEC2017

10/29

Reading an object stored locally using IPFS and a
Scale-Out NAS

New protocol behaviour
The global DHT is not accessed because all the nodes of the site
can access all the objects stored on the site. The object is read
from the Scale-Out NAS.

Site 1 Site 2
[Client][IPFS n1 [IPFS n2][DFS n1|[DFS n2][DFS MDS] ||[IPFS n3]

get
object

get DFS Nodes storing the object

read object
send object D
2 o8

— get object

d

t DFS Nodes storing the objsm

ad objeﬁ

Figure 4: Network exchanges when a client reads an object stored locally.

Experimental Evaluation

We evaluate only on the Grid’5000 testbed three different software
architectures:

@ IPFS in its default configuration deployed into a regular Cloud,;

@ IPFS in its default configuration deployed across a Fog/Edge
infrastructure;

© IPFS coupled with independent Scale-out NAS solutions in a Fog/Edge
context.

In two scenarios:

local access one client on each site writes and reads objects stored locally;

remote access one client on one site writes locally and another client located
on another site reads it.

We use RozoFS* as Scale-Out NAS and a tmpfs as a low level backend.

11/29 4pertin:hal-01149847

Material and Methods

We measure:

Average access time: the average time to write or read an object in a specific
workload;

Network traffic: the amount of data exchanged between the sites.

The (one-way) latencies between the different nodes have been set in
order to be representative to:

local wireless link, Lroe = 10 ms;

® wide area network link, Lcore = 50 ms;

the latency to reach the cloud, L¢joug = 100 ms;

the latency between the server of a same site: 0.5ms.

Our benchmark code as well as raw results are available at
https://github.com/bconfais/benchmark

12/29

https://github.com/bconfais/benchmark

13/29

Average access times while writing and reading from the same site

Mean writing time (seconds)

Mean reading time (seconds)

Size || »56KkB | 1MB | 10MB Size || y56KkB | 1MB | 10MB
Number Number
w |1 1.72 2.14 3.07 1 1.47 1.88 3.04
2. 110 1.53 2.00 7.97 10 1.35 1.77 5.22
& [100 2.29 5.55 27.58 100 1.57 2.62 11.24
(a) — Using a centralized Cloud infrastructure to store all the objects.
Mean writing time (seconds) Mean reading time (seconds)
Size || y56KB | 1MB | 10MB Size || »56KkB | 1MB | 10MB
Number Number
w |1 0.17 0.22 0.34 1 0.25 0.28 0.54
2. 110 0.17 0.21 0.40 10 0.26 0.27 0.54
& [100 0.33 1.07 3.92 100 0.29 0.50 1.98
(b) — Using the default approach of IPFS.
Mean writing time (seconds) Mean reading time (seconds)
Size || »56KkB | 1MB | 10MB Size || 256KkB | 1MB | 10MB
Number Number
w |1 0.18 0.23 0.38 1 0.14 0.18 0.31
2. 110 0.17 0.22 0.43 10 0.14 0.18 0.36
& [100 0.33 1.08 3.97 100 0.19 0.36 1.83

Table 1: Mean time (seconds) to write or read one object under different conditions

(c) — Using IPFS on top of a RozoFS cluster deployed in each site.

(the number on the left indicates the number of operations executed in parallel on each client).

Advantages & Drawbacks

Our approach has several advantages:

Contains the network traffic: The DHT is only used for remote accesses;

Increases locality: Local replicas are first accessed (before remote ones);
But also a drawback:

DHT does not reflect the actual location: A remote site can only access
the object through the node it was written on, and not
from all the nodes of the site;

14/29

Improving locality when accessing an object stored
on a remote site

Reading an object stored remotely

Limitation A third site is potentially solicited due to the DHT repartition, and this
first site is not necessarily close to the client.

Site 1 Site 2 Site 3
[IPFS Nodel][IPFS Node2 | [IPFS Node3 || IPFS Node4 [IPFS Node5 | Client |
find = get object

location

Dg in DHT

get/read object

D<

L]
7y

get/read objec

send object

put store object
location

Inyit

Figure 5: Network exchanges when a client reads an object stored on a remote site (read from
Node4).
16/29

[)
Lille®
oblect metadata
eyl @ Conpiégne $
Lannion 5 gt 0
Roscoft o e AT ° .
s e
[3

. Le Mans
° ®rewes @

vammes

L]

Angers riéans

® 10 Y

Nt -
W Poitiers

S @Angouleme a Clgyfont-Ferrand ¢

&

.
& Bodehux

D where is the object 2

Avignon

S e
Ee Montpeller |) Nice
o\ —* (N) Sopis il
Telouse S
%

P
L‘\,\"l\\ Marseille =")
7
® /conte

Figure 6: Exchanges when an object stored in
Paris is accessed from Nice.

17/29

Drawbacks of the DHT

The DHT overlay is built
according to random node
identifiers that do not map the
physical topology. For

instance, Rennes and Strasbourg
are neighbours in the DHT but
are not close physically (Paris is
between them).

Because of the consistent hashing
used in the DHT, Nice needs to
contacts Strasbourg to locate an
object actually stored in Paris.

Drawbacks of the DHT

DHT does not take into account the physical topology: Neighbours in
the DHT may be physically far and the latency between
them may be high;

DHT prevents locality: Strasbourg has to be contacted although it is not
concerned by the objects. Accessing location record may
be done with a higher latency than the latency to access
the object.

DHT prevents disconnected mode: If Strasbourg is unreachable, Nice
cannot reach the object stored in Paris;

18/29

An inspiration from the DNS protocol

Our approach is inspired by the Domain Name System (DNS). In the
DNS, a resolver sends requests from the root node to node which
actually stores the information needed.

- Serverl Server 2 Server 5
Resolver - .com. .example.com.

xample.com. is at

= l .example.com.

Figure 7: Example of a

DNS Tree . . . >
Here is the answer you are looking fpr

Figure 8: Messages exchanged during an iterative DNS resolution.

19/29

A Tree based Metadata Replication Strategy
We propose to store the object’s location in a tree.

The tree is built according to the physical topology so that the parent of a
node is reachable with a lower latency than the parent of its parent.

Lyon
object—at paris
/S.Oms 4.0ms

Paris Marseille
object—at paris

5.0ms \2.5ms

Nice Toulouse

Figure 9: Example of subtree computed with our algorithm.

In Figure ?? Toulouse is closer to Marseille than Lyon.

Locations of objects are stored in all nodes at the top of the node storing
20020 A replica (the location of an object stored at Paris is also stored at Lyon).

Read protocol @/3)

Contrary to the DNS, requests are sent from the current node towards the root:

® to first request the node reachable with the lowest latency;
® to locate the closest replica;

® to enable disconnected mode.

21/29

Read protocol (2/3)

Nice Marseille Lyon Paris
Location tree || [Location tree || [Location tree] || [Storage
backend Server server server tadend
get Object lookup phase
(— object
| —| N
where is
object?
| not found
where is
object?
______notfound _ ,,,,D
whire is
objpct?
ooz atfparis _______ ,,,,D
get
object -~
object u
object | [€777TTTTTT o ooApT oo -
L-=--1 |

Figure 10: Read the object stored in Paris from Nice.

Metadata is found at Lyon, which is the root of the tree but is also on
the path between Nice and Paris. It is better to find metadata at Lyon
than at Strasbourg.

22/29

23/29

Read protocol (3/3)

Figure ?7? shows the metadata tree once the object is relocated at Nice.

Lyon
_object—»at pa_ris
object—at nice

/S.Oms 4.0ms

Paris Marseille
object-at paris object—at nice
5.0ms 2.5ms
Nice Toulouse

object—at nice

Figu re 11: Metadata tree once the object is relocated at Nice.

Experimental Evaluation (1/2)

We measure the time to locate the objects in the two approaches (we consider
different replication levels in the DHT).

® 1000 objects are written at Strasbourg and are read successively from the others
sites (the order is different for each object).

® During a read operation, each object is read one and only time from any site
that does not have accessed the object before.

® Test was executed 10 times and average result is presented.

Figure 12: Tree used. Objects are written in Strasbourg and read from other sites.

24/29

25/29

Time (s)

Time (s)

Figure 13: Times to locate the objects in the first and in the sixth read. Objects are sorted by

Experimental Evaluation (22

Our approach —=—

0 200 400 600 800 1000
Object
(a) — First read
L DHTKI —+—
L DHT k6 —&—
Our approach —#—
o
pod
JUUUUOVSSL ol
JUUUOIOOURT TS St e ag POUOOYS o]
2333335 00s + -
0 200 400 600 800 1000
Object

(b) — Sixth read

the time to locate them.

26/29

Advantages & drawbacks

Our approach has several advantages:

Contains the network traffic: Location is always found on a site along the
path to the site storing a replica;

Increases locality: If there is a replica close to the node, the location will
be found on a close site too (the more object replica, the
more location record replicas);

Disconnected mode: By requesting close node first, we enable the system
to work if a group of sites is disconnected from the others.

But also some drawbacks:

Update overhead: The number of update messages is variable and may
be important;

Root node can become a bottleneck

A more realistic experiment using FIT and G5K
platforms

Experimentation using Grid'5000 and FIT

We want to evaluate the performance of our approach using things at the
Edge of the Network instead of emulating them on the Grid'5000
platform.

We propose to deploy a Fog Site on the Grid'5000 testbed and the clients
on the FIT platform.

28/29

Interconnection difficulties

® No direct IPv4 connection between the two platforms (NAT) - only
the public address of frontends are reachable from the other
platform;

® No IPv6 support on Grid’5000;
® No locality of the VPN gateway provided by Grid'5000.

We have no other choice than establishing a tunnel between the two
platforms.

E | [/‘ g5k
]—litk - 7 > site frontend
“n)) ((t-‘ % iotlab frontehd 9Pk frontend

m3 node m3 node 4a8 node
(ipfs client) (border router)

l ipfs node
A
@ put/get object

loTLab G5K

sshAt&h,;éf -

Figure 14: Established tunnel between loTlab and Grid'5000.

29/29

Interconnection difficulties
® The routing between lotLab and Grid'5000 is not optimal (traffic
between the two platforms in Grenoble go through Sophia);

® The increase of latency is most important between the A8 node and
the M3 node than between the two platforms;

® TCP support in RIOT is still limited, limiting IPFS to objects of 80

bytes!
iotlab platform g5k platform
3ms/250Kbps 1Sms/? | 1ms/STAMbps
30msl250Kbis (theoretical) 12ms/54.5Mbps
. T
‘ m3 border node U = 2
if7: 2001:660:5307:3164:1711:6b10:65f6:5d02 eth0: 10.0.12.100/ ethl: 10.0.15.251 eth0: 194.199.16.167 eth0: 172.16.17.2
. . 2001:660:5307:3000::64 .)
m3 node (ipfs client) a8 node iotlab frontend ipfs node

Figure 15: Overhead of the tunnel.

Theses limitations make performance evaluations really difficult to
w00 Perform.

Results

® We developed a program in RIOT to put/get an object stored in
IPFS.

® No paralellism yet.

Time to write one object from the m3 node: 0.722 seconds (£0.306)

31/29

Conclusion

® Coupling a Scale-Out NAS to IPFS limits the inter-sites network
traffic and improve locality of local accesses;

® Replacing the DHT by a tree mapped on the physical topology
improves locality to find the location of objects;

® Experiments using iotlab and Grid'5000 are not easy to perform.

32/29

Questions

bastien.confais@Is2n.fr

33/29

RozoFS in a nutshell

RozoFS is a distributed filesystem with the following characteristics:

® POSIX filesystem;

® Metadata server to locate the nodes storing the data;

® Erasure coding (Mojette erasure code);

® Intensive workload: good performance in sequential and random accesses;
® Access through the FUSE API;

Blocks of 4 KB, 8 KB or 16 KB.

34/29

Read protocol (2bis/2)

Once the object is accessed, a new replica is created locally (at Nice) and
location records are created asynchronously. All sites ascendant of Nice in the
tree are updated.

Nice Marseille Lyon Paris
Location tree ‘LOCation tree ‘Location tree
backend server server server backend
store Object relocation phase
object
add

EFject —at Niﬁ
D add object —at Njt: D
D add objedt —at Nice D

Figure 16: Relocation process when the object stored in Paris is read from Nice.

®

35/29

Interconnection difficulties

G5K

ipfs node
= 17216172
g5k frontend 1) ssh -R 5001.(-:115001 confais@194.199 16,167

1:5001 du frontend -> redirect to ipfs node:5001

VA

T Toriisier oriab
boovss0:s307:30m:5

P
L/m.s 251 2)55h L 2150011115001 confals@2001:660:5307:30115
iotlab frontend port 5001 of the 28 node i reirec o the pot 5001 ofth frntend

ethernet over serial link
- a8 node
10012100

2001:660:5307:3000::64

ethernet over serial link f, m3 node (border router)
E— 2001:660:5307:3164::1

<

wireless link - 6lowpan over 802.15.4

‘m3 node (ipfs client)
0T 0805307 3168 17410, 51:5002

3) get 2001:660:5307:3000::64 port 5001

,,))

Figure 17: First connection between iotlab and g5k.

Because, it is not possible to bind a listening port on the iotlab frontend,
3220 we establish a second tunnel between the frontend and a A8 node.

	Fog computing architecture
	Improving locality when accessing an object stored locally
	Experimental evaluation

	Improving locality when accessing an object stored on a remote site
	Experimental evaluation

	A more realistic experiment using FIT and G5K platforms
	Problems we face

	Conclusion
	Appendix

