
Improving locality of an object store in a Fog
Computing environment

Bastien Confais, Benôıt Parrein, Adrien Lebre
LS2N, Nantes, France

Grid’5000-FIT school

4th April 2018

1/29

Outline

1 Fog computing architecture

2 Improving locality when accessing an object stored locally

3 Improving locality when accessing an object stored on a remote site

4 A more realistic experiment using FIT and G5K platforms

5 Conclusion

2/29

Fog Computing architecture

Extreme Edge

Frontier Frontier

Frontier

Domestic network

Enterprise network

Wired link
Wireless link

Cloud Computing

Cloud Latency

ge to Fog latency
Fog [10-100ms]

errrrrr

Mo

Figure 1: Overview of a Cloud, Fog and Edge infrastructure.

3/29

Properties for a Fog Storage system

We established a list of properties a distributed storage system should have:

• Data locality;

• Network containment;

• Mobility support;

• Disconnected mode;

• Scalability.

4/29

Assumptions

• Clients use the closest Fog site;

• LFog (≈ 10 ms) ≤ LCore (≈ 100 ms) ≤ LCloud (≈ 200 ms); enlever

• Objects are immutable;

• We want to access the closest object replica;

• We particularly focus on location management.

5/29

IPFS in a nutshell

Among three existing object stores, InterPlanetary File System (IPFS)1

filled most of the properties (Rados and Cassandra were also studied)2.

IPFS is an object store that uses:

• a Kademlia Distributed Hash Table (DHT) spread among all the
nodes to locate the objects;

• a BitTorrent like protocol to exchange the objects.

1DBLP:journals/corr/Benet14
2confais:hal-013976866/29

Improving locality when accessing an object stored
locally

Reading an object stored locally

Limitation When the requested node does not store the object, Inter-sites network
traffic is generated by accessing the DHT to locate it (in red).

Site 1 Site 2

read object

get object

send object

find
locations in DHT

get/read object

get object

send object

store object

put
location in DHT

Client IPFS Node1 IPFS Node2 IPFS Node3

Figure 2: Network exchanges when a client reads an object stored locally, on IPFS Node1.

8/29

Our solution: coupling IPFS and a Scale-Out NAS3

Figure 3: Topology used to deploy an object store on top of a Scale-Out NAS local to each site.

3ICFEC20179/29

Reading an object stored locally using IPFS and a

Scale-Out NAS

New protocol behaviour
The global DHT is not accessed because all the nodes of the site
can access all the objects stored on the site. The object is read
from the Scale-Out NAS.

Site 1 Site 2

get DFS Nodes storing the object

read object

get
object

send object

get DFS Nodes storing the object

read object

get object

Client IPFS n1 IPFS n2 DFS n1 DFS n2 DFS MDS IPFS n3

Figure 4: Network exchanges when a client reads an object stored locally.
10/29

Experimental Evaluation

We evaluate only on the Grid’5000 testbed three different software
architectures:

1 IPFS in its default configuration deployed into a regular Cloud;

2 IPFS in its default configuration deployed across a Fog/Edge
infrastructure;

3 IPFS coupled with independent Scale-out NAS solutions in a Fog/Edge
context.

In two scenarios:

local access one client on each site writes and reads objects stored locally;

remote access one client on one site writes locally and another client located
on another site reads it.

We use RozoFS4 as Scale-Out NAS and a tmpfs as a low level backend.

4pertin:hal-0114984711/29

Material and Methods

We measure:

Average access time: the average time to write or read an object in a specific
workload;

Network traffic: the amount of data exchanged between the sites.

The (one-way) latencies between the different nodes have been set in
order to be representative to:

• local wireless link, LFog = 10 ms;

• wide area network link, LCore = 50 ms;

• the latency to reach the cloud, LCloud = 100 ms;

• the latency between the server of a same site: 0.5 ms.

Our benchmark code as well as raw results are available at

https://github.com/bconfais/benchmark

12/29

https://github.com/bconfais/benchmark

Average access times while writing and reading from the same site

Mean writing time (seconds) Mean reading time (seconds)

Number
Size

256 KB 1 MB 10 MB
Number

Size
256 KB 1 MB 10 MB

3
sites

1 1.72 2.14 3.07 1 1.47 1.88 3.04
10 1.53 2.00 7.97 10 1.35 1.77 5.22
100 2.29 5.55 27.58 100 1.57 2.62 11.24

(a) – Using a centralized Cloud infrastructure to store all the objects.

Mean writing time (seconds) Mean reading time (seconds)

Number
Size

256 KB 1 MB 10 MB
Number

Size
256 KB 1 MB 10 MB

3
sites

1 0.17 0.22 0.34 1 0.25 0.28 0.54
10 0.17 0.21 0.40 10 0.26 0.27 0.54
100 0.33 1.07 3.92 100 0.29 0.50 1.98

(b) – Using the default approach of IPFS.

Mean writing time (seconds) Mean reading time (seconds)

Number
Size

256 KB 1 MB 10 MB
Number

Size
256 KB 1 MB 10 MB

3
sites

1 0.18 0.23 0.38 1 0.14 0.18 0.31
10 0.17 0.22 0.43 10 0.14 0.18 0.36
100 0.33 1.08 3.97 100 0.19 0.36 1.83

(c) – Using IPFS on top of a RozoFS cluster deployed in each site.

Table 1: Mean time (seconds) to write or read one object under different conditions
(the number on the left indicates the number of operations executed in parallel on each client).

13/29

Advantages & Drawbacks

Our approach has several advantages:

Contains the network traffic: The DHT is only used for remote accesses;

Increases locality: Local replicas are first accessed (before remote ones);

But also a drawback:

DHT does not reflect the actual location: A remote site can only access
the object through the node it was written on, and not
from all the nodes of the site;

14/29

Improving locality when accessing an object stored
on a remote site

Reading an object stored remotely
Limitation A third site is potentially solicited due to the DHT repartition, and this

first site is not necessarily close to the client.

Site 1 Site 2 Site 3

find
location
in DHT

get/read object

get/read object

get object

send object

store objectput
location
in DHT

IPFS Node1 IPFS Node2 IPFS Node3 IPFS Node4 IPFS Node5 Client

Figure 5: Network exchanges when a client reads an object stored on a remote site (read from
Node4).

16/29

Drawbacks of the DHT

object metadata

Figure 6: Exchanges when an object stored in
Paris is accessed from Nice.

• The DHT overlay is built
according to random node
identifiers that do not map the
physical topology. For
instance, Rennes and Strasbourg
are neighbours in the DHT but
are not close physically (Paris is
between them).

• Because of the consistent hashing
used in the DHT, Nice needs to
contacts Strasbourg to locate an
object actually stored in Paris.

17/29

Drawbacks of the DHT

DHT does not take into account the physical topology: Neighbours in
the DHT may be physically far and the latency between
them may be high;

DHT prevents locality: Strasbourg has to be contacted although it is not
concerned by the objects. Accessing location record may
be done with a higher latency than the latency to access
the object.

DHT prevents disconnected mode: If Strasbourg is unreachable, Nice
cannot reach the object stored in Paris;

18/29

An inspiration from the DNS protocol

Our approach is inspired by the Domain Name System (DNS). In the
DNS, a resolver sends requests from the root node to node which
actually stores the information needed.

.

.com. .fr. .net.

.example.com.

①

② ③ ④

⑤

Figure 7: Example of a
DNS Tree

test.example.com?

.com. is at 2

test.example.com?

.example.com. is at 5

test.example.com?

Here is the answer you are looking for

Resolver Server 1.
Server 2

.com.
Server 5

.example.com.

Figure 8: Messages exchanged during an iterative DNS resolution.

19/29

A Tree based Metadata Replication Strategy
We propose to store the object’s location in a tree.

The tree is built according to the physical topology so that the parent of a

node is reachable with a lower latency than the parent of its parent.

Nice

Paris
object�at paris

Marseille

5.0 ms

Toulouse

2.5 ms

Lyon
object�at paris

5.0 ms 4.0 ms

Figure 9: Example of subtree computed with our algorithm.

In Figure ?? Toulouse is closer to Marseille than Lyon.

Locations of objects are stored in all nodes at the top of the node storing
a replica (the location of an object stored at Paris is also stored at Lyon).20/29

Read protocol (1/3)

Contrary to the DNS, requests are sent from the current node towards the root:

• to first request the node reachable with the lowest latency;

• to locate the closest replica;

• to enable disconnected mode.

21/29

Read protocol (2/3)

Nice Marseille Lyon Paris

Object lookup phase

where is
object?

not found

where is
object?

not found

where is
object?

at Paris

get
object

object

get
object

object

Client
Storage
backend

Location tree
server

Location tree
server

Location tree
server

Storage
backend

Figure 10: Read the object stored in Paris from Nice.

Metadata is found at Lyon, which is the root of the tree but is also on
the path between Nice and Paris. It is better to find metadata at Lyon
than at Strasbourg.

22/29

Read protocol (3/3)

Figure ?? shows the metadata tree once the object is relocated at Nice.

Nice
object at nice

Paris
object�at paris

Marseille
object at nice

5.0 ms

Toulouse

2.5 ms

Lyon
object�at paris

object at nice

5.0 ms 4.0 ms

Figure 11: Metadata tree once the object is relocated at Nice.

23/29

Experimental Evaluation (1/2)

We measure the time to locate the objects in the two approaches (we consider
different replication levels in the DHT).

• 1000 objects are written at Strasbourg and are read successively from the others
sites (the order is different for each object).

• During a read operation, each object is read one and only time from any site
that does not have accessed the object before.

• Test was executed 10 times and average result is presented.

Nice

Strasbourg

Rennes

Marseille

5.0 ms

Toulouse

2.5 ms

Lyon

7.0 ms 4.0 ms

Paris

5.0 ms

Bordeaux

5.0 ms

4.5 ms

Figure 12: Tree used. Objects are written in Strasbourg and read from other sites.

24/29

Experimental Evaluation (2/2)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

T
im

e
 (

s
)

Object

DHT k1
DHT k6

Our approach

(a) – First read

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000

T
im

e
 (

s
)

Object

DHT k1
DHT k6

Our approach

(b) – Sixth read

Figure 13: Times to locate the objects in the first and in the sixth read. Objects are sorted by
the time to locate them.

25/29

Advantages & drawbacks

Our approach has several advantages:

Contains the network traffic: Location is always found on a site along the
path to the site storing a replica;

Increases locality: If there is a replica close to the node, the location will
be found on a close site too (the more object replica, the
more location record replicas);

Disconnected mode: By requesting close node first, we enable the system
to work if a group of sites is disconnected from the others.

But also some drawbacks:

Update overhead: The number of update messages is variable and may
be important;

Root node can become a bottleneck

26/29

A more realistic experiment using FIT and G5K
platforms

Experimentation using Grid’5000 and FIT

We want to evaluate the performance of our approach using things at the
Edge of the Network instead of emulating them on the Grid’5000
platform.

We propose to deploy a Fog Site on the Grid’5000 testbed and the clients
on the FIT platform.

28/29

Interconnection difficulties

• No direct IPv4 connection between the two platforms (NAT) - only
the public address of frontends are reachable from the other
platform;

• No IPv6 support on Grid’5000;

• No locality of the VPN gateway provided by Grid’5000.

We have no other choice than establishing a tunnel between the two
platforms.

a8 nodem3 node
(ipfs client)

iotlab frontend

ipfs node

g5k frontend

m3 node
(border router)

G5KIoTLab
 put/get object

g5k
site frontend

ssh tunnel

Figure 14: Established tunnel between IoTlab and Grid’5000.

29/29

Interconnection difficulties
• The routing between IotLab and Grid’5000 is not optimal (traffic

between the two platforms in Grenoble go through Sophia);

• The increase of latency is most important between the A8 node and
the M3 node than between the two platforms;

• TCP support in RIOT is still limited, limiting IPFS to objects of 80
bytes!

m3 node (ipfs client) iotlab frontend ipfs node

eth0: 172.16.17.2if7: 2001:660:5307:3164:1711:6b10:65f6:5d02 eth0: 10.0.12.100/
2001:660:5307:3000::64

eth0: 194.199.16.167eth1: 10.0.15.251

a8 node

iotlab platform g5k platform
1ms/57.1Mbps 9ms/112Mbps

12ms/54.5Mbps30ms/250Kbps (theoretical)

Figure 15: Overhead of the tunnel.

Theses limitations make performance evaluations really difficult to
perform.30/29

Results

• We developed a program in RIOT to put/get an object stored in
IPFS.

• No paralellism yet.

Time to write one object from the m3 node: 0.722 seconds (±0.306)

31/29

Conclusion

• Coupling a Scale-Out NAS to IPFS limits the inter-sites network
traffic and improve locality of local accesses;

• Replacing the DHT by a tree mapped on the physical topology
improves locality to find the location of objects;

• Experiments using iotlab and Grid’5000 are not easy to perform.

32/29

Questions

bastien.confais@ls2n.fr

33/29

RozoFS in a nutshell

RozoFS is a distributed filesystem with the following characteristics:

• POSIX filesystem;

• Metadata server to locate the nodes storing the data;

• Erasure coding (Mojette erasure code);

• Intensive workload: good performance in sequential and random accesses;

• Access through the FUSE API;

• Blocks of 4KB, 8 KB or 16 KB.

34/29

Read protocol (2bis/2)

Once the object is accessed, a new replica is created locally (at Nice) and

location records are created asynchronously. All sites ascendant of Nice in the

tree are updated.

Nice Marseille Lyon Paris

Object relocation phasestore
object

add
object →at Nice

add object →at Nice

add object →at Nice

Client
Storage
backend

Location tree
server

Location tree
server

Location tree
server

Storage
backend

Figure 16: Relocation process when the object stored in Paris is read from Nice.

35/29

Interconnection difficulties

a8 node

m3 node (ipfs client)

wireless link - 6lowpan over 802.15.4

iotlab frontend

ethernet over serial link

ipfs node

g5k frontend

g5k site frontend

ethernet over serial link

m3 node (border router)

194.199.16.167

2001:660:5307:30�::5

10.0.15.251

10.0.12.100

2001:660:5307:3000::64

2001:660:5307:3164::1

172.16.17.2

2001:660:5307:3164:1711:6b10:65f6:5d02

1) ssh -R 5001:[::1]:5001 confais@194.199.16.167

::1:5001 du frontend -> redirect to ipfs node:5001

2) ssh -L [::]:5001:[::1]:5001 confais@2001:660:5307:30�:5

port 5001 of the a8 node is redirect to the port 5001 of the frontend

3) get 2001:660:5307:3000::64 port 5001

G5K

IoTLab

Figure 17: First connection between iotlab and g5k.

Because, it is not possible to bind a listening port on the iotlab frontend,
we establish a second tunnel between the frontend and a A8 node.32/29

	Fog computing architecture
	Improving locality when accessing an object stored locally
	Experimental evaluation

	Improving locality when accessing an object stored on a remote site
	Experimental evaluation

	A more realistic experiment using FIT and G5K platforms
	Problems we face

	Conclusion
	Appendix

