
FogIoT Orchestrator: an Orchestration System for IoT
Applications in Fog Environment

Bruno Donassolo - Orange Labs

Ilhem Fajjari - Orange Labs
Arnaud Legrand - INRIA - LIG

Panayotis Mertikopoulos - INRIA - LIG

April 5, 2018

1 / 21



Outline

1 Introduction

2 Architecture

3 Use case

4 Implementation

5 Conclusion

2 / 21



IoT: Cloud

Cloud

Sensors

swarm

• Apps rely on the cloud for
processing.

• scalable
• cost-effective

• Problem: latency critical
applications.

• E.g.: augmented reality
• max delay in the order

of miliseconds.

3 / 21



IoT: Fog

Fog Fog Fog

Cloud

Sensors

swarm

• Fog Computing
• Complex, heterogeneous,
distributed, mobile and
dynamic environment.

• Applications that run over
it are not simpler. . .

4 / 21



Application - Fire detection/combat

2-phases:
• detection
• evacuation plan

Requirements:
• Low latency: detection
• Processing: evacuation path

5 / 21



Main challenges in a fog environment

What do we need to create a fog environment?

1 Infrastructure
• IoT sensors/actuators
• Cloud
• Devices in the range edge-cloud

2 Model/write the application
3 Hardware abstraction
4 Deploy app. components in the infrastructure
5 Monitoring the infrastructure

• CPU/RAM
• Network latency/bandwidth

6 / 21



Main challenges in a fog environment

What do we need to create a fog environment?

1 Infrastructure
• IoT sensors/actuators
• Cloud
• Devices in the range edge-cloud

2 Model/write the application

3 Hardware abstraction
4 Deploy app. components in the infrastructure
5 Monitoring the infrastructure

• CPU/RAM
• Network latency/bandwidth

6 / 21



Main challenges in a fog environment

What do we need to create a fog environment?

1 Infrastructure
• IoT sensors/actuators
• Cloud
• Devices in the range edge-cloud

2 Model/write the application
3 Hardware abstraction

4 Deploy app. components in the infrastructure
5 Monitoring the infrastructure

• CPU/RAM
• Network latency/bandwidth

6 / 21



Main challenges in a fog environment

What do we need to create a fog environment?

1 Infrastructure
• IoT sensors/actuators
• Cloud
• Devices in the range edge-cloud

2 Model/write the application
3 Hardware abstraction
4 Deploy app. components in the infrastructure

5 Monitoring the infrastructure
• CPU/RAM
• Network latency/bandwidth

6 / 21



Main challenges in a fog environment

What do we need to create a fog environment?

1 Infrastructure
• IoT sensors/actuators
• Cloud
• Devices in the range edge-cloud

2 Model/write the application
3 Hardware abstraction
4 Deploy app. components in the infrastructure
5 Monitoring the infrastructure

• CPU/RAM
• Network latency/bandwidth

6 / 21



Architecture

• Application descriptor:
• actor-based, data-flow

programming model
• agnostic to infrastruc-

ture

• Life-cycle manager:
• actors placement
• reconfiguration

• Hw abstraction
• containers

7 / 21



Use case

Temperature

sensor

Long-term

Analysis

Filter Decision

Temperature

sensor

Temperature

sensor

Temperature

sensor

CPU

Disk

RAM

CPU

RAM

CPU

RAM

Actuator

Req: Latency

Endpoints

Fog

Temp > 50°C

Temp > 70°C

at 2 sensors

each 1s

Temperature

TemperatureRead Temp.

Req: Latency

Req: Latency

Emergency

Req: Bandwidth

Disk

Temperature (24 hours period)

DB

• Simplified fire detection app
• But, it contains the typical requirements associated to a
fog application

8 / 21



High-level

9 / 21



High-level

9 / 21



Grid5000

• Provisioning: Ansible
• Using different sites: global VLAN

• Forward multicast packets needed by Calvin

10 / 21



FIT/IoT-LAB

• Provisioning:
• python/bash scripts
• FIT tools: open-a8-cli, opkg

• A8 nodes: calvin
• M3 nodes (temperature sensor): CoAP protocol, IPv6/SLIP
• M3 nodes and OSs: RIOT vs Contiki

11 / 21



Overview: Grid5000 and FIT/IoT-LAB

• Main problem using both platforms: Connectivity
• private, independent networks

• Solution:
• VPNs
• Install openvpn in A8 nodes to put them in the Grid5000 network
• https://www.grid5000.fr/mediawiki/index.php/VPN

• Problem:
• Artificial link
• Realistic?
• Latency: 25ms
• Bandwidth: 20Mb

12 / 21

https://www.grid5000.fr/mediawiki/index.php/VPN


Overview: Grid5000 and FIT/IoT-LAB

• Main problem using both platforms: Connectivity
• private, independent networks

• Solution:
• VPNs
• Install openvpn in A8 nodes to put them in the Grid5000 network
• https://www.grid5000.fr/mediawiki/index.php/VPN

• Problem:
• Artificial link
• Realistic?
• Latency: 25ms
• Bandwidth: 20Mb

12 / 21

https://www.grid5000.fr/mediawiki/index.php/VPN


Overview: Grid5000 and FIT/IoT-LAB

• Main problem using both platforms: Connectivity
• private, independent networks

• Solution:
• VPNs
• Install openvpn in A8 nodes to put them in the Grid5000 network
• https://www.grid5000.fr/mediawiki/index.php/VPN

• Problem:
• Artificial link
• Realistic?
• Latency: 25ms
• Bandwidth: 20Mb

12 / 21

https://www.grid5000.fr/mediawiki/index.php/VPN


Calvin

• Open source project lead by Ericsson
• https://github.com/EricssonResearch/calvin-base

• Concept:
• IoT development must be sim-

ple
• Not worry about communica-

tion protocols and hardware
specifics

• Applications:
• Actor model: private internal state
• Flow based computing

13 / 21

https://github.com/EricssonResearch/calvin-base


Calvin

Application description:
• GUI
• Text: own syntax

Functional
src : std.Trigger(tick=1, data="fire")
snk : io.Log(loglevel="INFO")
src.data > snk.data

Deployment
{"requirements":{"src":[{
"op":"node_attr_match",
"kwargs":{"index":["node_name",
{"name":"runtime-0"}]},"type":"+"}]}}

14 / 21



Calvin

Architecture:
• Calvin’s runtimes: abstraction to actors
• Requirement: IP connectivity

• Multicast packets to node discovery

Deployment:
• Automatic select runtime to run actors

Image from: Calvin – Merging Cloud and IoT

https://doi.org/10.1016/j.procs.2015.05.059

What is missing?
App is running. . . What about the monitoring?

15 / 21



Calvin

Architecture:
• Calvin’s runtimes: abstraction to actors
• Requirement: IP connectivity

• Multicast packets to node discovery

Deployment:
• Automatic select runtime to run actors

Image from: Calvin – Merging Cloud and IoT

https://doi.org/10.1016/j.procs.2015.05.059

What is missing?
App is running. . . What about the monitoring?

15 / 21



Monitoring - Prometheus

Prometheus

• https://prometheus.io/
• Time-series database
• Allow post-mortem analysis of
tests

• Easy integration with other tools

scrape_configs:
- job_name: ’prometheus’

static_configs:
- targets:[’localhost:9090’]

16 / 21

https://prometheus.io/


Monitoring - Cadvisor

Cadvisor

• https://github.com/google/cadvisor
• Monitors performance of docker contain-
ers

• CPU
• RAM

• Real-time
• Easy to deploy:

• docker run google/cadvisor:latest
• Exporting/visualizing metrics:

• Web UI
• REST
• Prometheus:

• localhost:8080/metrics

17 / 21

https://github.com/google/cadvisor


Monitoring - Blackbox exporter

Blackbox exporter

• https://github.com/prometheus/blackbox_exporter
• Service availability:

• HTTP, HTTPS, DNS, TCP and ICMP.

• Our use, monitor network latency
• Access:

• http://localhost:9115/probe?target=google.com&module=icmp

scrape_configs:
- job_name: ’blackbox’

module: [icmp] # ping request
static_configs:

- targets: # List of target IPs
relabel_configs:

replacement: 127.0.0.1:9115 # The blackbox exporter’s

18 / 21

https://github.com/prometheus/blackbox_exporter
http://localhost:9115/probe?target=google.com&module=icmp


Monitoring - Blackbox exporter

Blackbox exporter

• https://github.com/prometheus/blackbox_exporter
• Service availability:

• HTTP, HTTPS, DNS, TCP and ICMP.

• Our use, monitor network latency
• Access:

• http://localhost:9115/probe?target=google.com&module=icmp

scrape_configs:
- job_name: ’blackbox’

module: [icmp] # ping request
static_configs:

- targets: # List of target IPs
relabel_configs:

replacement: 127.0.0.1:9115 # The blackbox exporter’s

18 / 21

https://github.com/prometheus/blackbox_exporter
http://localhost:9115/probe?target=google.com&module=icmp


Monitoring - Netdata

Netdata - FireQoS - Traffic Control

• https://github.com/firehol/netdata
• Last metric to collect:

• network bandwidth
• Another monitoring tool, but for hosts

• tons of metrics

Objective
Measure bandwidth used by calvin between 2 machines

interface eth0 world bidirectional ethernet
class calvin

match host IP_address

19 / 21

https://github.com/firehol/netdata


Monitoring - Netdata

Netdata - FireQoS - Traffic Control

• https://github.com/firehol/netdata
• Last metric to collect:

• network bandwidth
• Another monitoring tool, but for hosts

• tons of metrics

Objective
Measure bandwidth used by calvin between 2 machines

interface eth0 world bidirectional ethernet
class calvin

match host IP_address

19 / 21

https://github.com/firehol/netdata


Conclusion

• We propose an architecture to orchestrate fog applications
• Work in progress
• We show that using both platforms, it is possible to create a fog envi-

ronment

• 2 nice testbeds, complementary capabilities
• Grid5000: powerful, homogeneous, scalable, focus: cloud, HPC
• FIT/IoT-LAB: heterogeneous, scalable, focus: IoT

• But still, 2 separate platforms
• 2 queues, usage policies
• 2 setup process

• Looking forward for SILECS infrastructure.

20 / 21



Conclusion

• We propose an architecture to orchestrate fog applications
• Work in progress
• We show that using both platforms, it is possible to create a fog envi-

ronment
• 2 nice testbeds, complementary capabilities

• Grid5000: powerful, homogeneous, scalable, focus: cloud, HPC
• FIT/IoT-LAB: heterogeneous, scalable, focus: IoT

• But still, 2 separate platforms
• 2 queues, usage policies
• 2 setup process

• Looking forward for SILECS infrastructure.

20 / 21



Conclusion

• We propose an architecture to orchestrate fog applications
• Work in progress
• We show that using both platforms, it is possible to create a fog envi-

ronment
• 2 nice testbeds, complementary capabilities

• Grid5000: powerful, homogeneous, scalable, focus: cloud, HPC
• FIT/IoT-LAB: heterogeneous, scalable, focus: IoT

• But still, 2 separate platforms
• 2 queues, usage policies
• 2 setup process

• Looking forward for SILECS infrastructure.

20 / 21



Conclusion

• We propose an architecture to orchestrate fog applications
• Work in progress
• We show that using both platforms, it is possible to create a fog envi-

ronment
• 2 nice testbeds, complementary capabilities

• Grid5000: powerful, homogeneous, scalable, focus: cloud, HPC
• FIT/IoT-LAB: heterogeneous, scalable, focus: IoT

• But still, 2 separate platforms
• 2 queues, usage policies
• 2 setup process

• Looking forward for SILECS infrastructure.

20 / 21



That’s the End

Thanks

21 / 21


	Introduction
	Architecture
	Use case
	Implementation
	Conclusion

