FogloT Orchestrator: an Orchestration System for loT

Applications in Fog Environment

Bruno Donassolo - Orange Labs

llhem Fajjari - Orange Labs
Arnaud Legrand - INRIA - LIG
Panayotis Mertikopoulos - INRIA - LIG

April 5, 2018

1/21

@ Introduction

@® Architecture

©® Use case

O Implementation

© Conclusion

2/21

loT: Cloud

e Apps rely on the cloud for
processing.

e scalable
o cost-effective
e Problem: latency critical
applications.

e E.g.: augmented reality

e max delay in the order
of miliseconds.

Sensors
swarm

3/21

e Fog Computing

e Complex, heterogeneous,
distributed, mobile and
dynamic environment.

e Applications that run over
it are not simpler. ..

Sensors
swarm

4/21

Application - Fire detection/combat

2-phases:

e detection

e evacuation plan

Requirements:

e Low latency: detection

e Processing: evacuation path

5/21

Main challenges in a fog environment

What do we need to create a fog environment?

@ Infrastructure

e |oT sensors/actuators
e Cloud
e Devices in the range edge-cloud

6/21

Main challenges in a fog environment

What do we need to create a fog environment?

@ Infrastructure

e |oT sensors/actuators
e Cloud
e Devices in the range edge-cloud

® Model/write the application

6/21

Main challenges in a fog environment

What do we need to create a fog environment?

@ Infrastructure

e |oT sensors/actuators
e Cloud
e Devices in the range edge-cloud

® Model/write the application

©® Hardware abstraction

6/21

Main challenges in a fog environment

What do we need to create a fog environment?

@ Infrastructure

e |oT sensors/actuators
e Cloud
e Devices in the range edge-cloud

® Model/write the application
©® Hardware abstraction

@ Deploy app. components in the infrastructure

6/21

Main challenges in a fog environment

What do we need to create a fog environment?

@ Infrastructure

e |oT sensors/actuators
e Cloud
e Devices in the range edge-cloud

® Model/write the application
©® Hardware abstraction
@ Deploy app. components in the infrastructure

® Monitoring the infrastructure

o CPU/RAM
e Network latency/bandwidth

6/21

Architecture

Application descriptor

t
Orchestrator eer

actor actor actor

Monitor tife—cycle manager

N e Application descriptor:

e actor-based, data-flow
programming model

e agnostic to infrastruc-
ture

deployement
agent

3| management
lagent

A
infra updates

Infrastructure

e Life-cycle manager:
e actors placement
e reconfiguration

Monitor
Fog layer

Monitor c‘"%"e"' Componeny e Hw abstraction
e containers

7/21

Use case

Fog

Req: Bandwidth Long-term
Analysis
Temperature (24 hour} period)
cPU
RAM
Fiter
' g
Temp > 50°C

Temperature
sensor |

each 1s sensor

Req: Latency

Smperature
sensor
Smperature
sensor

Smperalre

CPU
Disk
RAM

CPU
RAM

Decision

Temp > 70°C

at 2 sensors Req: Latency

Req: Latency
Emerdency

A 4

Actuator

e Simplified fire detection app

e But, it contains the
fog application

typical requirements associated to a

8/21

High-level

Application descriptor

ctor
Orchestrator

actor actor jactor

Monitor

(.ife-cycle manager

deployement
agent

management controller
agent

infra updates T places app into infra s

Infrastructure

Fog layer

Monitor Monitor

9/21

High-level

Application descriptor

ctor
Orchestrator

actor actor jactor

Monitor (.ife-cycle manager

deployement
agent

management
agent

controller

places app into infra v

Infrastructure

Fog layer

Monitor Monitor

Application descriptor

d. Trigger(tick=1, de. atir_mateh
Orchestrator fire") --kwa.-gsm(‘Endaexr et
io.Log(loglevel="1nFo) ||LiIoderamerl,
src.data > snk.data 0‘,)1) yporir
Monitor

Lifefcycle manager (Calvin)

cacvisor

{Calvin's

blackbox
exporter (Caivin's

netdata + Calvin's controller|
FireQos lagent ‘

Infrastructure Q docker |container(Calvin actor |
Fog layer Prometheus cadvisor | Blackbox exporter
Grid5000 Netdata + FireQoS

docker cgntai“er[cmwn actor

cadvisor | Blackbox exporter

Netdata + FireQoS

grenoble.iot-1ay ﬁ

Endpoints
FIT/loT-LAB
SLIP|
@ |EEE 802.15.4
® *)

M3 - sensors M3 - border router
IPV6 addresses

IPv4/IPv6

A8 - Run Calvin's runtimes

9/21

docker Cnntniner| Calvin actor

cadvisor | Blackbox exporter
P4 Metdata + FireQoS

Infrastructure 9 docker | container| Canin actor
Fog layer Prometheus cadvisor | Blackbox exporter

e Provisioning: Ansible
e Using different sites: global VLAN
e Forward multicast packets needed by Calvin

10/21

FIT/loT-LAB

Endpoints
FIT/laT-LAB
IEEE 842.15. E 0 act
®)3 IPv4/IPv6 e @
M3 - sensore M - border router AB - Run Calvin's runtimes
|Pv6 addresses

e Provisioning:

e python/bash scripts

e FIT tools: open-a8-cli, opkg
e A8 nodes: calvin

e M3 nodes (temperature sensor): CoAP protocol, IPv6/SLIP
e M3 nodes and OSs: RIOT vs Contiki

11/21

Overview: Grid5000 and FIT/loT-LAB

e Main problem using both platforms: Connectivity
e private, independent networks

12/21

https://www.grid5000.fr/mediawiki/index.php/VPN

Overview: Grid5000 and FIT/loT-LAB

e Main problem using both platforms: Connectivity
e private, independent networks
e Solution:

e VPNs
o Install openvpn in A8 nodes to put them in the Grid5000 network
o https://www.grid5000.fr/mediawiki/index.php/VPN

12/21

https://www.grid5000.fr/mediawiki/index.php/VPN

Overview: Grid5000 and FIT/loT-LAB

e Main problem using both platforms: Connectivity
e private, independent networks
e Solution:
e VPNs
o Install openvpn in A8 nodes to put them in the Grid5000 network
o https://www.grid5000.fr/mediawiki/index.php/VPN
e Problem:
Artificial link
Realistic?

Latency: 25ms
Bandwidth: 20Mb

12/21

https://www.grid5000.fr/mediawiki/index.php/VPN

e Open source project lead by Ericsson
e https://github.com/EricssonResearch/calvin-base

e Concept:
e loT development must be sim- - - -
Greeter Snocze Print
std.Constant std.ClassicDelay io.Print
ple
. token token token token
e Not worry about communica- : ' ' '
tion protocols and hardware
specifics
v

e Applications:
pp
e Actor model: private internal state
e Flow based computing
v

13/21

https://github.com/EricssonResearch/calvin-base

Application description:
e GUI
e Text: own syntax

Functional

src : std.Trigger(tick=1, data="fire")
snk : io.Log(loglevel="INFO")
src.data > snk.data

| A\

Deployment

{"requirements":{"src": [{
"op":"node_attr_match",
"kwargs":{"index": ["node_name",
{"name" . "runtime—O"}] }’ "type" . n+n}] }}

14 /21

Calvin

Architecture:

e Calvin's runtimes: abstraction to actors
e Requirement: IP connectivity
o Multicast packets to node discovery

Deployment:

e Automatic select runtime to run actors

Application

Actor | Actor

Runtime Runtime

Runtime Runtime
IPC

& YR |

os 0os

Hardware Hardware

Platform
independent

T
dependent

T

Platform Platform

Image from: Calvin — Merging Cloud and loT

https://doi.org/10.1016 /j.procs.2015.05.059

15/21

Calvin

Architecture:
e Calvin's runtimes: abstraction to actors

e Requirement: IP connectivity
o Multicast packets to node discovery

Deployment:

e Automatic select runtime to run actors

Application

Actor | Actor

Runtime Runtime

Runtime Runtime
IPC

& YR |

os 0os

Hardware Hardware

T

Platform Platform

Platform
independent

dependent

Image from: Calvin — Merging Cloud and loT

https://doi.org/10.1016 /j.procs.2015.05.059

What is missing?

App is running. .. What about the monitoring?

15/21

Monitoring - Prometheus

Prometheus

https://prometheus.io/

Time-series database "

Allow post-mortem analysis of
tests

Easy integration with other tools

scrape_configs:
- job_name: ’prometheus’
static_configs:
- targets:[’localhost:9090°]

16/21

https://prometheus.io/

Monitoring - Cadvisor

Cadvisor

e https://github.com/google/cadvisor
Monitors performance of docker contain-
ers

e CPU

e RAM B , .
Real-time RN TSN STV

Easy to deploy:
o docker run google/cadvisor:latest

o TN T A A A e

Exporting/visualizing metrics: - S B .
e Web Ul —

e REST
e Prometheus:

o localhost:8080/metrics

17/21

https://github.com/google/cadvisor

Monitoring - Blackbox exporter

Blackbox exporter

e https://github.com/prometheus/blackbox exporter

e Service availability:
o HTTP, HTTPS, DNS, TCP and ICMP.

e Our use, monitor network latency

e Access:
e http://localhost:9115/probe?target=google.com&module=icmp

18/21

https://github.com/prometheus/blackbox_exporter
http://localhost:9115/probe?target=google.com&module=icmp

Monitoring - Blackbox exporter

Blackbox exporter

https://github.com/prometheus/blackbox _exporter

Service availability:
o HTTP, HTTPS, DNS, TCP and ICMP.

Our use, monitor network latency

e Access:
e http://localhost:9115/probe?target=google.com&module=icmp

scrape_configs:
- job_name: ’blackbox’
module: [icmp] # ping request
static_configs:
- targets: # List of target IPs
relabel_configs:
replacement: 127.0.0.1:9115 # The blackbox exporter’s

18/21

https://github.com/prometheus/blackbox_exporter
http://localhost:9115/probe?target=google.com&module=icmp

Monitoring - Netdata

Netdata - FireQoS - Traffic Control

e https://github.com/firehol /netdata
e Last metric to collect:
e network bandwidth l‘HLHMu
e Another monitoring tool, but for hosts
e tons of metrics

19/21

https://github.com/firehol/netdata

Monitoring - Netdata

Netdata - FireQoS - Traffic Control

e https://github.com/firehol /netdata
e Last metric to collect:
e network bandwidth l‘HlHMu
e Another monitoring tool, but for hosts
e tons of metrics

Objective

Measure bandwidth used by calvin between 2 machines

interface ethO world bidirectional ethernet
class calvin
match host IP_address

19/21

https://github.com/firehol/netdata

Conclusion

e We propose an architecture to orchestrate fog applications

e Work in progress
e We show that using both platforms, it is possible to create a fog envi-
ronment

20/21

Conclusion

e We propose an architecture to orchestrate fog applications

e Work in progress
e We show that using both platforms, it is possible to create a fog envi-
ronment

e 2 nice testbeds, complementary capabilities

e Grid5000: powerful, homogeneous, scalable, focus: cloud, HPC
e FIT/loT-LAB: heterogeneous, scalable, focus: loT

20/21

Conclusion

e We propose an architecture to orchestrate fog applications

e Work in progress
e We show that using both platforms, it is possible to create a fog envi-
ronment

e 2 nice testbeds, complementary capabilities

e Grid5000: powerful, homogeneous, scalable, focus: cloud, HPC
e FIT/loT-LAB: heterogeneous, scalable, focus: loT

e But still, 2 separate platforms

e 2 queues, usage policies
e 2 setup process

20/21

Conclusion

e We propose an architecture to orchestrate fog applications
e Work in progress
e We show that using both platforms, it is possible to create a fog envi-
ronment

2 nice testbeds, complementary capabilities

e Grid5000: powerful, homogeneous, scalable, focus: cloud, HPC
e FIT/loT-LAB: heterogeneous, scalable, focus: loT

But still, 2 separate platforms

e 2 queues, usage policies
e 2 setup process

Looking forward for SILECS infrastructure.

20/21

That's the End

Thanks

21/21

	Introduction
	Architecture
	Use case
	Implementation
	Conclusion

